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The problem of soil±pile±foundation±super-
structure interaction is examined, and a simple
rational procedure to analyse the response of a
structure supported on pile groups is presented.
This procedure combines theories for the
computation of the dynamic impedances and
kinematic±seismic response factors of pile foun-
dations with a multi-degree-of-freedom structur-
al model. The procedure is applied to compute
the response of a bridge in Rio Dell, California,
which was shaken by the Ms = 7´0 Petrolia
earthquake in 1992. The predicted response
agrees well with recorded data. The signi®cance
of considering the frequency-dependence of the
pile foundation impedances in the analysis of
the response of the superstructure is discussed.
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L'article s'inteÂresse aux probleÁmes geÂneÂreÂs par
les interactions sol±pieu fondation±superstruc-
ture et preÂsente une proceÂdure rationelle simple
permettant d'analyser la reÂponse d'une struc-
ture fondeÂe sur groupes de pieux. Cette proceÂ-
dure combine les theÂories disponibles,
permettant le calcul des impeÂdances dynamiques
et des facteurs de reÂponse sismique d'une
fondation sur pieux, aÁ un modeÁle structural aÁ
n degreÂs de liberteÂ. La proceÂdure a eÂteÂ
appliqueÂe aÁ un pont du Rio Dell, en Californie,
qui a eÂteÂ soumis en 1992 au seÂisme de PeÂtrolia
de Ms = 7´0. La reÂporte preÂvue correspond bien
aux raleun observeÂes. L'article montre eÂgale-
ment qu'il est importance de consideÁrer, lors de
l'analyse de la reÂponse de la superstructure, que
la freÂquence est fonction de l'impedance des
pieux.

INTRODUCTION

When a ¯exible structure is supported by a stiff
foundation, it is natural to assume that the input
motion from a potential earthquake at the founda-
tion level of the structure is merely that of the free
®eld. However, as the ratio of the stiffness of the
structure to that of the foundation increases, the
superstructure's response interacts through its foun-
dation and the surrounding soil creates additional
soil deformations, so that the motion in the vicinity
of the foundation can differ substantially from that
of the free ®eld. This Paper presents a simpli®ed
yet realistic method of analysis for the case where
the foundation of the superstructure consists of pile
groups.

Assuming linear soil±foundation±superstructure
response, the system analysis under seismic excit-

ation can be performed in three consecutive steps
as shown in Fig. 1: ®rst ®nd out the motion of the
foundation in the absence of the superstructure (the
so-called foundation input motion), which includes
translational as well as rotational components; then
determine the dynamic impedances (springs and
dashpots) associated with swaying, vertical, rock-
ing and cross-swaying±rocking oscillations of the
foundation; and lastly calculate the seismic re-
sponse of the superstructure supported on the
springs and dashpots and subjected at the ground
base to the foundation input motion. For the ®rst
two steps, several formulations have been devel-
oped for pile foundations and have been reviewed
by Novak (1991) and Pender (1993).

Despite remarkable advances over the past two
decades in pile foundation dynamics, little is
known about the signi®cance of pile foundation±
superstructure interaction, even for important
structures such as like bridges. For instance, in
several cases the assumption that the pile group is
a ®xed monolithic support prevails. In fact, more
often the foundation compliance is represented by
a single real-valued spring. Plausible reasons for
the lack of established procedures for the analysis
of structures supported on pile foundations include
the following.
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(a) Most of the research results published on the
dynamic response of pile foundations is
scattered and presented in such a form that is
of little use to the bridge (structural) engineer.

(b) Some of the most reliable methods for
analysing the response of pile foundations rely
on proprietary computer codes.

The procedure for seismic soil±pile foundation±
superstructure interaction described in this paper
makes use of physical motivated approximations.
Existing theories and solutions are used to compute
of the dynamic impedances and kinematic seismic
response factors of pile foundations. The super-
structure is idealized with a multi-degree-of-
freedom model supported by realistic frequency-
dependent springs and dashpots. Using this simple
procedure the signi®cance of considering the
frequency dependence of pile foundation impe-
dances to the response of the superstructure can be

investigated easily. The methodology is validated
by a prediction of the response of Painter Street
Bridge in Rio Dell, California, which has been
instrumented since 1977 by the California Division
of Mines and Geology and survived in 1992
Petrolia earthquake. The predicted response using
the proposed procedure agrees well with recorded
data, and considerable supporting evidence on the
signi®cance of the soil±pile foundation±superstruc-
ture interaction is given.

PROPOSED APPROXIMATE PROCEDURE

Novak (1991) presents a variety of methods of
solution for the seismic soil±pile±foundation re-
sponse analysis. In this paper simple, yet realistic,
solutions involved in each step are outlined. The
methods used are physically motivated and com-
putationally convenient; extensive comparative
studies have also shown their basic validity.
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Foundation input motion
The input motion to the structural system is

induced at the foundation. In general, the support
motion induced to the foundation is different from
that of the free-®eld seismic motion. This differ-
ence is due to the scattered wave ®eld generated
from the difference between pile and soil rigidities.
Nevertheless, for motions that are not rich in high
frequencies, the scattered ®eld is weak, and the
support motion can be considered to be approxi-
mately equal to that of the free ®eld (Fan et al.,
1991; Gazetas, 1984; Kaynia & Novak, 1992;
Makris & Gazetas, 1992; Mamoon & Banerjee,
1990; Tajimi, 1977). For instance, for Painter
Street Bridge studied in the sequel, the soil deposit
has an average shear velocity Vs of about 200 m/s
(Heuze & Swift, 1991); the pile diameter d is
0´36 m. Accordingly, even for the high frequency
content of the input motion ( f < 10 Hz, see Fig.
6), the dimensionless frequency a0 = 2ð fd/Vs is of
the order of only 0´1. From studies on vertically
propagating shear waves in homogeneous soil
deposits (Fan et al., 1991), the kinematic±seismic
response factors (head-group displacement over
free-®eld displacement) are very close to unity,
even at values of the dimensionless frequency
a0 . 0´1.

Waves other than vertical S-waves also par-
ticipate in ground-shaking. Seismic±kinematic re-
sponse factors for SV waves, P waves and
Rayleigh surface waves are given by Mamoon &
Banerjee (1990) Kaynia & Novak (1992), Makris
(1994) and Makris & Badoni (1995). For all these
types of wave which produce a vertical component
of the seismic input motion, the kinematic
response factors are also close to unity. Only in
some cases do SV waves with a high angle of
incidence result in kinematic response factors of
the order of 0´90. Based on such supporting
analytical evidence, in most cases the excitation
input motion at the level of the pile foundation can
be assumed to be equal to that of the free-®eld
motion. Only at very high frequencies or for very
soft soils will a reduction be needed. Moreover, in
the case of Rayleigh waves and SV waves, a pile
group produces an effective rocking input motion,
whereas for oblique incidence SH waves the
foundation experiences torsional excitation. These
motions are the result of phase differences that the
seismic input has at the locations of different piles
in the group (wave passage effect); their intensity
depends on the frequency content of the seismic
input and the geometry of the pile group.

Dynamic impedances of pile foundation
The dynamic stiffness of a pile group, in any

vibration mode, can be calculated using the
dynamic stiffness of single pile in conjunction

with dynamic interaction factors. This method,
originally introduced for static loads by Poulos
(1968), and later validated for dynamic loads by
Kaynia & Kausel (1982), Sanchez-Salinero (1983)
and Roesset (1984), can be used with con®denceÐ
at least for groups of fewer than 50 piles. Dynamic
interaction factors for various modes of loading are
available in the form of non-dimensional graphs
(Gazetas, Fan, Kaynia & Kausel, 1991) and, in
some cases, closed-form expressions derived from
a beam on a Winkler foundation model in
conjunction with simpli®ed wave propagation
theory (Makris & Gazetas, 1992). For example,
the horizontal dynamic interaction factor for two
®xed-head long piles in a homogeneous stratum
takes the form
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4
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(1)

where kX and cX are distributed spring and dashpot
coef®cients and ø(r, è) is an approximate attenua-
tion function proposed by (Makris & Gazetas, 1992)
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where i is Ï21, S is the distance between the axes
of two piles and è is the angle between the
direction of loading and the line connecting the
axes of the two piles. âs is hysteretic damping in
the soil, Vs is the shear wave velocity of the soil,
and VLaÐan apparent velocity of the compression±
extension waves, given the name Lysmer's analog
velocityÐis VLa = 3´4Vs/ð(1 2 v) (Gazetas &
Dobry, 1984a, 1984b).

For vertical and rocking modes, pile motion is
along the axial direction, and the interaction
factors for two ¯oating piles in a homogeneous
half-space is

áZ (S) �
�

d

2S

�1=2

exp

�
ÿ (âs � i)

ù(S ÿ d=2)

V s

�
(5)
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When the dynamic stiffnesses of the single pile
and dynamic interaction factors between any two
piles are known, the dynamic stiffnesses of a group
of piles using superposition can be calculated
(Makris, Cordosa, Badoni & Delis, 1993). Accord-
ingly, the horizontal dynamic stiffness of a pile
group consisting of N piles is simply

K [G]
X �K [1]

X

XN

i�1

XN

j�1

åX (i, j) (6)

where the åX (i, j) is the inverse of the matrix áX (i, j)

obtained from equation (1).
The vertical dynamic stiffness of the group is

also given by an equivalent expression

K [G]
Z �K [1]

Z

XN

i�1

XN

j�1

åZ(i, j) (7)

where åZ(i, j) is the inverse of the matrix áZ(i, j)

obtained from equation (5).
The rocking group-dynamic stiffness can be

derived using a similar analysis (Dobry & Gazetas,
1988; Makris et al., 1993) as

K [G]
R �K [1]

Z

XN

i�1

xi

XN

j�1

xjåZ(i, j) (8)

where xi is the distance of pile i from the axis
about which rotation occurs.

For the cross-horizontal±rocking interaction

factors it has been found (Gazetas et al., 1991)
that the approximation

áXR(i, j) � á2
X (i, j) (9)

proposed by Randolph (1977) for static loaded
piles, is also valid under dynamic loading.
Accordingly, the cross-horizontal±rocking group
stiffness is

K [G]
XR �K [1]

XR

XN

i�1

XN

j�1

åXR(i, j) (10)

where åXR(i, j) is the element of the inverse of matrix
áXR(i, j) given by equation (9).

The dynamic stiffness of the single pile is
usually expressed in the form

K [1]
á � K [1]

á fk[1]
á1(ù)� ik

[1]
á2(ù)g (11)

where the index á denotes the degree of
freedom (X, Z, R, RX) and the quantity within
brackets is the associated dynamic stiffness
coef®cient. It can be obtained from published
solutions in the form of formulae and charts
using Novak's plane±strain formulation (Novak,
1974; Novak & Aboul-Ella, 1978), using ®nite
element analysis (Blaney, Kausel & Roesset, 1976;
Kuhlemeyer, 1979; Roesset, 1984), boundary
element analysis (Kaynia & Kausel, 1982; Banerjee
& Sen, 1987; Kaynia & Novak, 1992),

ms, ls

mf, lf

Ks
X, Cs

X
Ks

z, C
s
Z

Ks
R

K 
[F]

R

K 
[F]

XR

K 
[F]

Z

K 
[F]

X

w, Z

u, X

θ, R

h

θf

Ug(t) Uf
Vf

Vg(t)

hθf

θs
Us

Vs

Fig. 2. Pile foundation±superstructure idealization

36 MAKRIS, GAZETAS AND DELIS



and from beam on Winkler foundation formulations
(Makris & Gazetas, 1993; Kavvadas & Gazetas,
1993).

Determination of system seismic response
The foundation±superstructure system is idea-

lized with the six degrees of freedom system shown
in Fig. 2. Such simple idealization is realistic for
the study of bridge response. In Fig. 2 ms, mf , Is

and If are the masses and moments of inertia of the
superstructure and the foundation. For a multi-span
bridge, ms and Is are the mass and moment of
inertia of the deck corresponding to one span plus
a, usually small, contribution from the bridge pier.
Ks

X , Ks
Z and Ks

R are the horizontal, vertical and
rotational stiffnesses of the superstructure. For the
section of the superstructure considered, Ks

X , Ks
Z

and Ks
R are the combinations of the stiffnesses of

the bridge pier and the bridge deck. This is a
reasonable approximation when the abutments of
the bridge and the foundation of the bridge pier
experience the same input motion. For relatively
short bridges this approximation can be realistic in
some cases. However, for relatively long bridges,
the abutment and pier base motions are likely to be
different and a more sophisticated model might be
more appropriate. Nevertheless, for bridges with
very long spans the contribution from the deck
stiffness might be negligible and the model
becomes again realistic, as the entire horizontal
stiffness of the superstructure comes essentially
from the bridge pier. Cs

X and Cs
Z are constants of

the superstructure damping, which is assumed to be
of linear viscous nature. K [F]

X , K [F]
Z , K [F]

R and
K [F]

RX are the horizontal, vertical, rocking and
cross-horizontal±rocking impedances of the pile
foundation and are complex valued quantities.

The degrees of freedom of the structural model
depicted in Fig. 2 are: kus, vs, hès, uf , vf, hèf l.

With the linear range and for small rotations,
the equations of motion of the system subjected to
a ground acceleration are transformed in the
frequency domain and expressed in matrix form as

[S(ù)]fU (ù)g � fF(ù)g (12)

in which {U(ù)} is the Fourier transform of the
response vector kus, vs, hès, uf , vf, hèf l and {F(ù)}
is the Fourier transform of the excitation vector
k2�ug, 2�vg, 0, 2(1 + ì)uÈg, 2(1 + ì)�vg, 2�ugl, with
ì = mf /ms. The elements of the matrix [S] are given
in Appendix 1. The Fourier transform of the
reactions from the pile foundation are given by

F fP[F]
X (t)g �K [F]

X (ù)uf (ù)�K [F]
XR (ù)èf (ù)

(13)

F fP[F]
Z (t)g �K [F]

Z (ù)vf (ù) (14)

Fig. 3. Painter Street Bridge after earthquake on 25
April 1992: (above) over highway 101; (right) north
pier

SOIL±PILE±FOUNDATION±STRUCTURE INTERACTION 37



F fM [F]
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(15)

where K [F]
X , K [F]

Z , K [F]
R and K [F]

RX = K [F]
XR

are the horizontal, vertical, rocking and cross-
horizontal±rocking impedances of the pile foun-
dation, and can be written in the form given
in equation (11) with superscript [1] replaced by
[F].

The remaining parameters appearing in the
dynamic stiffness matrix [S] are
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The system response in the time domain is obtained
by the inverse Fourier transform of the response
vector {U(ù)} (Clough & Penzien, 1993)

fU (t)g � 1

2ð

�1
ÿ1

[H(ù)]fF(è)g exp (iùt) dù

(20)

where [H(ù)] is the inverse of the matrix [S(è)].
Relative velocities and acceleration responses are
obtained from equation (20) after the matrix [H(è)]
has been premultiplied by iù and 2ù2, respec-
tively. Numerical solutions are then derived by the
discrete Fourier transform method (Veletsos &
Ventura, 1985).

The procedure presented is not restricted to the
simple structural model already used. Additional
degrees of freedom for the structure could be
incorporated to account for the motion of end
abutments and the torsional vibration of the bridge
about the vertical axis. Here the simple structural
model is introduced to present and validate an
integrated procedure for the analysis of soil±pile
group±superstructure interaction. Despite its sim-
plicity, the model predicts well the recorded
motion of Painter Street Bridge in the 1992
Petrolia earthquake.
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APPLICATION TO PAINTER STREET BRIDGE

Background
Painter Street Bridge, near Rio Dell in northern

California, is a continuous, two-span, cast in place,
prestressed post-tensioned concrete, box girder
bridge. It is typical of concrete bridges constructed
in 1973 and spans a four-lane highway. The
structure has one span of 146 ft� and one of
119 ft. It is 52 ft wide. The two end abutments and
the two-column bent are skewed at 398. The
columns are approximately 20 ft high. The bent
is supported by two pile groups, each consisting of
20 (4 � 5) driven concrete friction piles. Fig. 3
shows Painter Street Bridge over highway 101 and
the north pier of the bridge. An elevation and plan
view of the bridge, together with the location of
the accelerometers and the recorded peak accera-
tions, are given in Fig. 4. The cross-section of the
bridge and a plan view of the pile group are shown
in Fig. 5.

Painter Street Bridge was instrumented in 1977
by the California Division of Mines and Geology.
Several earthquakes from 1980 to 1987 ranging in
magnitude from 4´4ML to 6´9ML have produced
signi®cant accelerograms, the peak values of which
are summarized in Table 1. The largest peak
acceleration of 0´59 g was near the centre of the
bridge deck during a small (ML = 4´4) nearby
earthquake.

Maroney, Romstad & Chajes (1990) used these
records in conjunction with a number of ®nite
element and lumped parameter (stick) models of
the entire bridge. However, none of these models
accounted for soil±foundation±superstructure inter-
action. At each abutment, soil±wall interaction was
modelled using a single real-valued transverse
spring, the stiffness of which was back-calculated
from the interpreted small-amplitude fundamental
natural period, T < 0´30 s, in lateral vibration.

On 25 April 1992, the bridge was shaken
severely by the Petrolia earthquake (of magnitude
ML = 7´1 and 18 km from the fault). Motions were
recorded in all accelerographs, including the one in
the free ®eld (channels 12±14), that on the ground

near the east abutment (channels 15±17), that on
the deck near the east abutment (channels 9±11),
that on top of the footing of one pier (channels
1±3), that on the ground near the west abutment
(channels 18±20), that on the deck near the west
abutment (channels 4 and 5), and that at the
underside of the bridge girder directly above the
pier (channel 7). The locations of the accelero-
graphs are shown in Fig. 4, together with the peak
recorded acceleration (PRA) for each channel. Of

Table 1. Earthquake records on Painter Street Bridge (from Maroney et al., 1990)

Earthquake Date Magnitude Epicentral Peak acceleration: g
ML distance:

km C12 C13 C14 C6 C7 C8

Trinidad 8 November 1980 6´9 72 0´15 0´03 0´06 0´34 Ð 0´25
Rio Dell 16 December 1982 4´4 15 Ð Ð Ð 0´39 0´43 0´59
Cape Mendocino 24 August 1983 5´5 61 Ð Ð Ð 0´27 0´22 0´16
Event 1 21 November 1986 5´1 32 0´46 0´08 0´16 0´24 0´26 0´33
Event 2 21 November 1986 5´1 26 0´15 0´02 0´12 0´21 0´36 0´29
Cape Mendocino 31 July 1987 5´5 28 0´15 0´04 0´09 Ð 0´34 0´27
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particular interest in this Paper are the records of
channels 3 (PRA = 0´48 g) and 7 (PRA = 0´92 g).
Despite the very high levels of acceleration, the
bridge suffered only minor damage (see Fig. 3).
The north±south (channel 14), east±west (channel
12) and vertical (channel 13) free-®eld records of
the Petrolia earthquake are shown in Fig. 6
together with their Fourier amplitudes.

Figure 7 shows the recorded acceleration hist-
ories near the east abutment on the ground and on
the deck. The horizontal motions recorded on the
deck do not differ much from the horizontal
motions recorded on the embankment. However,
the vertical accelerations recorded on the deck are
40% greater than those for the embankment
nearby.

Figure 8 shows the recorded acceleration hist-
ories and Fourier amplitude spectra on the ground
(embankment) near the west abutment. The time
histories in Fig. 8 (channels 18±20) are 100%
greater than those in the free-®eld record (channels
12±14) shown in Fig. 6. This observation indicates
that embankments can amplify the input motion

considerably; the end abutments can therefore be
subjected to an input motion which is stronger
than that at the foundation of the centre pier.
Fig. 9 shows the recorded acceleration histories
and Fourier spectra recorded on the deck near the
west abutment. Similar trends are observed.

The response of Painter Street Bridge to the
Petrolia earthquake was studied by Sweet (1993),
who developed a ®nite element model of the whole
bridge and a large volume of surrounding and
supporting soil. Inelastic soil behaviour was
modelled using an incremental plasticity model.
However, all this sophistication was inconsistent
with the modelling of the behaviour of the pile
group. Indeed, such modelling was based on the
assumption that no pile±soil±pile interaction occurs
at 3 ft spacing; the behaviour of the 20 pile group
was merely assumed to be 20 times that of a
single pile. In fact, pile to pile interaction is
expected to play a substantial role in pile group
response, given the very close relative spacing of
the piles (S/d < 2´60).

The philosophy behind the model developed in
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this Paper is diametrically opposite to that of
Sweet (1993). The simplest possible model of the
pier deck system is studied, and the pile group
foundation is represented by a set of springs and
dashpots. However, the frequency-dependent values
of these springs and dashpots are calculated in a
rational, physically motivated manner, and full
account of pile to pile interaction is taken.

Superstructure parameters
Even for a simpli®ed model like the one

presented, several uncertainties arise in the deter-
mination of its parameters. Such uncertainties
relate to the structural stiffness, structural damping,
mass distribution, foundation stiffness and pier
foundation±soil interaction. Attempts to model the
response of the bridge have been given by
Maroney et al. (1990), who modelled the super-
structure in detail, but nevertheless assumed that
the foundation stiffness was in®nite and the
foundation damping was zero.

The model presented here is a simpli®cation of
the stick model presented by Maroney et al.

(1990), who did not consider the longitudinal and
torsional modes of the model. The ®rst transverse
period of the superstructure was determined by
iteration and reported to be 0´28 s during the
seismic events of 1982±87 which had produced
less intense shaking of the bridge than the Petrolia
earthquake (see Table 1). Accordingly, ÙX s = 2ð/
0´28 s = 22´4 rad/s. The calibrated (back-calculated)
horizontal stiffness of the superstructure is reported
to be (Maroney et al., 1990) KX

s = 39 000 kips/ft
(5´69 3 105 kN/m). From equations (18) the mass
of the superstructure is given as ms = 1130 Mg.
The value of ms was also estimated by taking the
weight of half the deck plus the weight of the top
half of the piers and the calculated value which
was of the order of 1000 Mg and is in agreement
with the value mentioned previously.

Furthermore, Maroney et al. (1990) reported
that, from stress±strain laboratory tests on core
samples from existing bridges, the Young's mod-
ulus of the concrete was Ec = 3800 kip/in2

(2´6 3 107 kN/m2). This value is approximately
80% less than the value of Ec obtained from
empirical expressions. Under the stronger shaking
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of the Petrolia earthquake more cracking is
expected to have occurred, and thus the effective
value of Ec should be further reduced in an
equivalent linear dynamic analysis. In this study
the value of Ec reported by Maroney et al. (1990)
is reduced by 15%. With this reduction, Ec equals
22 GPa, which is a generally accepted effective
value for moderately cracked concrete. Based on
this assumption, the vertical stiffness of the bridge
pier KZ

c, can be approximated by

Kc
Z �

EcAc

hc

� (2�2� 107 kN=m2)(1�19 m2)

6 m

� 4�4� 106 kN=m (21)

where Ac and hc are the bottom cross-sectional area
and the net height of the pier respectively.

The vertical stiffness of the superstructure is
approximately

Ks
Z � 2Kc

Z � 8�8� 106 kN=m (22)

and from equation (16)

ÙZs � 96 rad=s

If l is the projection to the north±south direction of

the distance between the centres of the two piers
(l < 9´5 m), the rotational stiffness of the super-
structure can be approximated by

Ks
R �

Kc
Z l2

2
� (4�4� 106 kN=m)(90 m)2

2

� 2�0� 108 kNm=rad (23)

and from equation (16)

ÙRs � 60 rad=s

The moment of inertia of the deck is estimated to
be Is < 20 000 Mgm2 and from equation (19) the
radius of gyration of the superstructure is rs =
4´2 m. Sensitivity studies showed that the deck
response was not altered by a variation in the
modulus of concrete (20 GPa , Ec , 26 GPa).
Rather, the deck response is much more sensitive
to the values of the foundation stiffnesses.

Soil pro®le and foundation parameters
Before construction, a geotechnical exploration

at the location of the piers was conducted. Using
standard penetration test (SPT) measurements from
the ground surface down to a depth of about 10 m,
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Fig. 10. Four idealized soil pro®les that emerged from the refraction surveys
(Heuze & Swift, 1991)
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moderately stiff/dense soil layers were identi®ed,
which consisted of clayey sand, silty sand, sandy silt
and gravelly sand. STP blowcounts varied from 8
near the surface to 34 at 10 m depth. The under-
lying stratum was a very dense gravelly and silty
sand, where blowcounts exceeded 100 blows/ft.

In a geophysical exploration by Heuze & Swift
(1991) six so-called seismic refraction surveys
were reported, along four lines parallel to the
highway. Four different idealized soil pro®les have
emerged as shown in Fig. 10. Evidently, the
differences in the S wave velocities and shear
moduli among these pro®les are substantial, given
that they are 20±30 m apart from each other. For
instance, the resulting low-strain shear modulus
from the data along line 2 has twice the value of
that resulting from the data along line 1. It is quite
possible that some of these differences merely
re¯ect inadequacies (general and speci®c) of the
seismic refraction technique. The dynamic analysis
of the pile±foundation±bridge system used in this
Paper is based on the values extracted from the
data along line 2, which is adjacent to the pier.

Closed-form expressions for the static stiffnesses
of a single pile have been derived by ®tting ®nite
element results of the static problem (Gazetas,
1984). The accuracy of these expressions has been
veri®ed by comparing their results with the
solution of Blaney et al. (1976) for lateral and
vertical pile motion in homogeneous soil, and the
solution of Randolph (1981) for lateral pile motion
in non-homogeneous soil with modulus propor-
tional to depth. Using the expressions derived by
Gazetas, the soil data along line 2ÐGs = 100 MPa,
ís = 0´48, pile diameter d = 0´36 m and pile length
L = 7´62 mÐand Young's modulus of the pile
Ep = 22 000 MPa, the static stiffnesses of the single
®xed-head pile are approximated by

K
[1]
X � Esd(Ep=Es)

0�21 � 260 MN=m (24)

K
[1]
Z � 1�9Gsd(L=d)2=3 � 520 MN=m (25)

K
[1]
R � 0�15Esd

3(Ep=Es)
0�75 � 50 MNm=rad (26)

K
[1]
XR � ÿ0�22Esd

2(Ep=Es)
0�5 � 75 MN=rad (27)

The horizontal K
[1]
X and vertical K

[1]
Z static

stiffnesses of the single pile are also calculated
using the procedure developed by Trochanis,
Bielak & Christiano (1991) which is based on
one-dimensional analysis that uses a realistic
hysteretic model which has been calibrated using
a three-dimensional ®nite element analysis of the
soil±pile system. The procedure was originally
developed to produce load control force±displace-
ment curves. This procedure is modi®ed for
displacement control force±displacement curves in
Fig. 11(a). The resulting horizontal static stiffness
of the pile is the slope of the force±displacement
curve in Fig. 11(a), which at small de¯ections has

a value of approximately 200 MN/m. This value is
indeed close to the value given by equation (24).
The computer program developed by Trochanis et
al. (1991) was used to produce Fig. 11(b). The
initial stiffness provided by this curve is approxi-
mately 450 MN/m, which is also very close to the
result of equation (25). The small amplitude
vertical stiffness of the single pile is also calcu-
lated using the approximate closed-form solution
derived from elasticity theory. For compressible
piles in homogeneous deposits the vertical static
stiffness of a single pile can be approximated by
(Fleming, Wetman, Randolph & Elson, 1984)

K
[1]
Z �

4

1ÿ ís

� 2ð

æ

tan (ìL)

ìL

L

r0

1� 1

ð

Gs

E

4

1ÿ í

tan (ìL)

ìL

L

r0

Gsr0 (28)

where ís is Poisson's ratio of the soil, Gs is the
shear modulus of the soil, Ep is Young's modulus of
the pile, L is the pile length, r0 is the pile radius,
æ = ln(L/r0) and ì = (2Gs/Ep)1=2/r0. For L = 7´62 m,
r0 = 0´18 m and Ep/Gs . 250, equation (28) gives
K

[1]
Z . 25Gs r0. For the small-strain value Gs =

100 MPa, equation (28) gives K
[1]
Z = 450 MN/m,

which is in good agreement with the previous
results.

All the aforementioned values of pile stiffness
have been calculated using the small strain value
Gs(ãs , 10ÿ5) = Gmax . 100 MPa. However, under
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Fig. 11. Computed head force±displacement curves for
single pile (d = 0´36 m, L = 7´62 m, Gs = 100 MPa,
su = 400 kPa, ís = 0´48)
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the Petrolia seismic excitation the level of soil
strain is estimated to have been ãs . 10ÿ3 and
occasionally ãs = 10ÿ2. At this strain level the
modulus of soil shear is substantially reduced and
can be ®ve times less than the small strain value
Gmax (Tatsuoka, Iwasaki, Yoshida & Fukushima,
1979). At this point average realistic values for the
horizontal, vertical and cross-horizontal rocking
static stiffnesses of the single pile are selected
as K

[1]
X = 65 MN/m, K

[1]
Z = 200 MN/m, K

[1]
XR =

220 MN/rad, and the rocking stiffness of the
individual piles is neglected as it is negligible
compared with the rotational stiffness of the
foundation system resulting from the axial vibra-
tion of piles. These stiffnesses are approximately
two to four times smaller than the values obtained
using the small strain value of the soil shear
modulus (equations (24)±(27)). The horizontal and
cross-horizontal rocking stiffnesses are reduced
more than the vertical stiffness because the soil
strains near the soil surface that primarily in¯uence
the horizontal pile motion are larger that the
strains at greater depths on which the vertical
stiffness depends.

Using the procedure described for determining
the dynamic impedances, the group stiffnesses are
calculated from equations (6)±(8) and (10). For
instance, the horizontal and vertical dynamic
stiffness coef®cients for the 4 3 5 pile group are
plotted in Fig. 12 as a function of the dimensionless
frequency a0 = ùd/Vs. The normalized values of the

real part at the zero frequency limit are 0´19 for the
horizontal mode and 0´16 for the vertical mode.
These values are close to 1/5, which is the value
obtained by using the ¯exibility ratios provided in
classical foundation textbooks (e.g. Fleming et al.,
1984). The resulting static stiffnesses for the 4 3 5
group are K

[4�5]
X < 250 MN/m, K

[4�5]
Z < 600 MN/m

and K
[4�5]
XR < 300 MN/rad.

To calculate the foundation stiffnesses of Painter
Street Bridge, it is assumed that the motion of a
pile in one pile group does not affect the motion
of a pile belonging in the other pile-group. The
minimum distance between two piles in different
pile groups is S = 8 m, i.e. S/d . 22. Although for
such a high value of S/d no interaction is expected
between two piles, the motion of the entire pile
group, which has an equivalent diameter de <
4´6 m, might in¯uence the motion of the neigh-
bouring pile group as l/de is about 2´5. Never-
theless, for lack of other evidence, it is assumed
that no interaction occurs. To this end, the
horizontal, vertical, rocking and cross-horizontal
rocking stiffnesses of the foundation of Painter
Street Bridge are estimated to be

K
[F]
X � 2K

[4�5]
X � 500 MN=m (29)

K
[F]
Z � 2K

[4�5]
Z � 1200 MN=m (30)

K
[F]
R � K

[4�5]
Z l2=2 � 27000 MN=rad (31)

K
[F]
XR � 2K

[4�5]
XR � 600 MN=rad (32)

For these and h < 7 m, equation (18) gives
ÙX < 21 rad/s, ÙZ < 32´5 rad/s, ÙRf < 22 rad/s
and ÙXRf < 9 rad/s. The mass of the foundation
was estimated to be mf < 225 Mg, and the
moment of inertia If < 8000 Mgm2. From equation
(19) rf is about 5´96 m and ì is mf /ms < 0´2.

ANALYTICAL PREDICTION OF THE RESPONSE

The response of the foundation system of the
bridge is calculated from equation (20) and
compared against the recorded motion. Three
predictions are shown. Prediction A is the result
when the entire frequency dependence of the
foundation impedance is considered. Prediction B
is the result when the stiffness and damping of the
foundation are calculated at the predominant
frequency of the input motion ( fp = 2´32 Hz and
ùp = 14´57 rad/s, see Fig. 6(b), channel 14). At
this frequency the horizontal and vertical dynamic
stiffness coef®cients are kX1(14´57) + ikX2(14´57)
= 0´970 + i0´331 and kZ1(14´57) + ikZ2(14´57) =
0´903 + i0´545 respectively. Prediction C is the
result when the foundation is considered as a ®xed,
monolithic support.

Figure 13 shows the horizontal north±south
motion of the pile cap of the bridge foundation.
The result of prediction A agree well with the

a0 = ωd/Vs
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Fig. 12. Storage (real part) and loss (imaginary part)
stiffness factors of a four by ®ve pile group with rigid
pile cap as a function of dimensionless frequency with
Ep/Es = 75, rrp/rrs = 1´5, âs = 0´05 and ís = 0´48, in a
homogeneous half-space: (a) horizontal motion; (b)
vertical motion
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(channel 3)
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records. The peak values of both acceleration and
displacement are predicted very accurately. The
result for the displacement history from prediction
B also agrees well with the records and the
acceleration history is underestimated. Similar
predictions are given from prediction C where
the acceleration history is overestimated.

Figure 14 shows the vertical motion of the pile
cap. Again the results of prediction A are most
favourable for the peak acceleration values,
whereas the total displacement histories of the
three predictions are almost identical.

Figure 15 shows the horizontal north±south deck
acceleration and the deck drift relative to the level
of the pile cap. The results of prediction A for the
deck drift are good, but the acceleration is
underestimated by about 30%. There may be
several reasons for this discrepancy, such as
neglect of the torsional motion of the bridge about
the vertical axis, yielding of the bridge pier and
yielding of pile heads. Such effects are not
apparent with this simple model. For instance,
the deck acceleration response is very sensitive to
the value of the cross-horizontal rocking stiffness
of the pile foundation. As the absolute value of the
cross-horizontal rocking stiffness decreases, the
predicted deck acceleration becomes increasingly
pronounced, reaching the recorded values when the
cross-horizontal rocking stiffness is assumed to be
zero. Yielding of the pile heads will reduce the
value of the cross-horizontal rocking stiffness.
Nevertheless if the bridge response is calculated
by neglecting the moment transmitted at the pile
heads the entire analysis should be redone, starting
from the interaction factors given by prediction A
which have to be modi®ed for free head piles. The
results offered by prediction B are less favourable,
as the response is underestimated by 60%.
Prediction C gives erroneous results. The accel-
eration of the deck is overestimated by more than
100%, and high frequencies are present.

It is a notable example where poor modelling of
the foundation affects the response of the super-
structure drastically. The origin of this poor pre-
diction is the neglect of the foundation damping.
By assuming a ®xed, monolithic foundation no
energy dissipation is allowed through the founda-
tion (zero radiation damping), and all the induced
seismic energy is trapped into the superstructure
and eventually dissipated only by structural damp-
ing.

Another interesting observation is that the ratio
of the deck drift to the height of the bridge pier is
of the order of är = 1%. Although, there is no
precise value of that ratio which indicates the level
of non-linearities in the structural response, struc-
tures with moderate ductility are expected to ex-
perience some non-linear behaviour when är . 1%.

Figure 16 plots the recorded and predicted

Fourier amplitude spectra on the pile cap and on
the deck. The results of prediction A are most
favourable.

CONCLUSIONS

A simple integrated procedure has been pre-
sented to analyse the problem of soil±foundation±
superstructure interaction using the available the-
ories to calculate the dynamic impedances and
kinematic seismic response factors of pile founda-
tions. The procedure uses a simple structural
model which can be re®ned easily and expanded
to account for more complex structural response,
such as torsional motion of the deck and input
motion at the end abutments. Despite the simpli-
city of the model, the procedure gives encouraging
results for the response of Painter Street Bridge in
Rio Dell, California. The predicted response of the
bridge foundation system agrees well with recorded
motions. Realistic modelling of the foundation
affected the prediction of the superstructural
response drastically. Nevertheless, the deck accel-
eration response was underestimated by 30%. This
suggests that, for relatively strong movement such
as the Petrolia earthquake, non-linear analysis
could be more realistic. However, when the
structural response is non-linear, the analysis of
the frequency domain used here is not valid and
the response should be calculated in the time
domain.

ACKNOWLEDGEMENTS

Partial ®nancial support for this project has been
provided by Shimizu Corporation, Japan, and by
the Federal Highway Administration.

NOTATION

cX distributed damping coef®cient along horizontal

direction

CX
s damping of superstructure for motion along

horizontal direction

CZ
s damping of superstructure for motion along

vertical direction

d pile diameter

Ec effective Young's modulus of concrete

Ep Young's modulus of pile

Es Young's modulus of soil

F(ù) excitation vector of pile±foundation super-

structure system in frequency domain

Gs shear modulus of soil

h elevation of deck from foundation

If moment of inertia of foundation

Is moment of inertia of superstructure

kX distributed spring coef®cient along horizontal

direction

K
[F]
R rotational static stiffness of foundation
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KR
s rotational stiffness of superstructure

K
[F]
X horizontal static stiffness of foundation

KX
s horizontal stiffness of superstructure

K
[F]
XR cross-horizontal-rocking static stiffness of

foundation

K
[F]
Z vertical static stiffness of foundation

KZ
s vertical stiffness of superstructure

K [1]
X horizontal dynamic stiffness of single pile

K [G]
X horizontal dynamic stiffness of pile group

K [1]
Z vertical dynamic stiffness of single pile

K [G]
Z vertical dynamic stiffness of pile group

L pile length

mf mass of foundation

ms mass of superstructure

S pile-to-pile distance

S(ù) dynamic stiffness matrix of pile±foundation

superstructure system

uf horizontal displacement of foundation

ug horizontal ground displacement

us horizontal displacement of superstructure

U(ù) response vector of pile±foundation super-

structure system in frequency domain

vf vertical displacement of foundation

vg vertical ground displacement

vs vertical displacement of superstructure

VS shear wave velocity of soil

á(S, è) pile-to-pile interaction factor

âs hysteretic damping of soil

èf rotation of foundation

ís Poisson's ratio of soil

rf radius of gyration of foundation

rs radius of gyration of superstructure

ù angular frequency

APPENDIX 1. ELEMENTS OF THE DYNAMIC

STIFFNESS MATRIX [5]

S11 � ÿù2 � 2iùîX sÙX s �ÙX s
2 (33)

S12 � S21 � 0 (34)

S13 � S31 � ÙXRs
2 (35)

S14 � S41 � ÿù2 (36)

S15 � S51 � 0 (37)

S16 � S61 � ÿù2 ÿÙXRs
2 (38)

S22 � ÿù2 � 2iùîZsÙZs �ÙZs
2 (39)

S23 � S32 � S24 � S42 � 0 (40)

S25 � S52 � ÿù2 (41)

S26 � S62 � 0 (42)

S33 � ÿù2

�
rs

h

�
�ÙRs

2 (43)

S34 � S43 � S35 � S53 � 0 (44)

S36 � S63 � ÿÙRs
2 (45)

S44 � ÿù2(1� ì)�ÙX f
2 (k

[F]
X 1 (ù)� ik

[F]
X 2 (ù)) (46)

S45 � S54 � 0 (47)

S46 � S64 � ÿù2 ÿÙXRf
2 (k

[F]
XR1(ù)� ik

[F]
XR2(ù)) (48)

S55 � ÿù2(1� ì)�ÙZf
2 (k

[F]
Z1 (ù)� ik

[F]
Z2 (ù)) (49)

S56 � S65 � 0 (50)

S66 � ÿù2(1� ìrs=h)2 �ÙRs
2 �ÙRf

2 (k
[F]
R1 (ù)� ik

[F]
R2 (ù))

(51)
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